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CHAPTER 111 : PHOTCLUMINESCENCE

STUDY OF FHOSPHORESCENCE @

3.1 INTRODUCTION 31~

According to the theory of Phosphorescence this is
electronic process involved in the luminescent materjal. Theéese
electronic processes are significently influenced by trapping levels
in the phosphor . Phosphorescence decay 18 a tool to investigate
trapping levels in the phosphor and help to understand nature of the
trapping states, energy levels and type of kinetics involved in the

luminescent process,

In present study Photoluminescence of CaS: Sm : Nd and
G
CassDy:Tb are studied at room temp. ( 3000 k ) so as to get

information of the following aspects,

1) The nature of decay curve.

2) Energy distribution of trap levels,

3) Decay time constant.

4) Kinetics involved in decay mechanism and

5) Effect of activetors on decay behaviour.
3.2 THEORETICAL BACKGROUND

3.2.1 DECAY LAWS

While studing the decay of emission from organic molecules
in rigid media Jablonskii (1). Proposed an energy level scheme for
emitting centre as shown in fig ( 1:1 ). The fluorescence is given
by the transitions between the excited state F and the ground state
G, but the excited molecules or centre may reléx to metastable statg M,

transition Me G being forbidden. To return to. normal state transtion
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M-» F must be effected by thermal or optical activation. Thus
phosé#rescence emission due to F-> G transition is conditioned in
rate by optical process M-~ F. The energy required for the latter is
E. Then the probability of transition occurs pe:néecond is given by
P = S exp., (=-E/KT), ——mmen (3,1)
Where S is escape frequency factor, E is activation energy

( trap depth ) and T is the abolute temperature,

According to E.Becquerel (2) phosphorescence decay can be
either exponential or hyperbolic as per the kinetic involved in the

luminescent process,

A) EXPONENTIAL DECAY

The electron traps and luminescent centre are situated close
to each other in the phosphor. Nature of decay in such phospors is
exponential decay or monomolecular decay and kinetics involwed in

‘these material is first order kinetics.

for
1f P is the transition probability / return of the centre

to greund state when n centres are excited at any instant then

dg - J = pn. - . e an - (3.2 ’0

Where J is the number of excited centres per second by the
incident radiation. According to Randall and Wilkins ( 3,4 ) The
transition probability is given by equation ( 3;1 )

P= S exp., ( = B/KT )

and the lqpinescent 1ntena§ty I=pPn = solution<§;uat1on (3.2)

I=1 1 - exp. ( - pt &} (3.3)

Where I, is emission intensity at t = o , Under steady

excitation I = o so luminescent decay from eguation ( 3.2)
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- -

L Y T by integrating

eg b

=

nenoexp., ( - pt.) (3.4 )
Here no are number of excited electroﬁs at t =0
The luminescent intensity is given by

-4% -« - ( -pn).

I =
I = Png exp ( - Pt ).

I = Ig exp ( =-pPt)., ———cm——- ( 3.4)

Where I, = Png is the intensity ( when ¢ = 0 ) and t’-~1%—

’

where T is the life time of the phosphors,

In above equation rate of decay depeﬁds on transition
probability P. which is usefull to determine trap depth.

B) HYPERBOLIC DECAY s

This 18 known as the bimolecular decay of luminescence,
exist when electron traps are located away from the luminescence

centre and kinetics involved in it is second order,

Let n be the impurity centres with which only n number of
electrons combine at a time, If J centres are emptied per secomd
by excitation, the process is given by

where A is a constant known as recombination coefficient.

If P is the probability with which an electron combines
with any of the centre in time 4t , then |

P = Andt -----------; ( 3.7)

If all electrons return to ground states of the centres
through the conduction band with the above said probability P then
with J = 0, the rate of decay will be
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g% " - Anz ¢+ On integration.
o
n (1+nbAt, """"""“"(308)
Luminescence intensity I = = g%
= - (~-an?)
. iAo )
—1-———-—-—'
CI+ ngat)
I
- S (3.9)
(14Cit )

Where ol = N, A an another constant for large value of

t ( t»1 ) above equation becomes,

Io

I = —=F— R 3.10
°’Czt ( )

Above equation shows decay depends on initial intensity of

luminescence, and coefficient A, & temperature,

Treating the process more generally in ﬁhe light of different
capture cross sections for electrons, empty centres and traps,
Adirowitch ( 5,6 ) arrived at an approximate relation which is of the

form given by Becquerel,

I = Conmstant _p _-_______ ( 4.11 )

(t+ to)
wWhere b depends on the ratio of the cepture cross sections

of traps and empty centres. However,this egquation fails in cases
where well separated group of traps exist.

3.2,2 EFFECT OF STEADY EXCITATICN OF PHOSPHOR

When the phosphor is excited at a fixed temperature by
steady excitation, its luminescent intensity reaches a constant value

and the state of the phosphor is refered to as the equilibrium state,
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and inithis condition thé concentration of filled electron traps
is in equilibrium, If only a single trap occurs in the phosphor
then we have following two cases
A) PFirst Order Kinetics :

let J be the intensity of excitation, Then the rate of
raising of electrons to the excited state is proportional to J,
and is given by CJ where C is constant of proportionality., If there
are n electrons in N traps, then the rate of cabture at excited
electrons in traps isCJa ( N-n ), ‘a being the probability of
capture per trap. The rate of escape of electrons from traps is
given by ns exp ( -« B / KT ). Under the equilibrium condition, the
rate of capture of excited electrons in traps and rate of escape
of electrons from traps will be equal and thus we get

Cla ( N=n) = nsexp ( = E/KT ) -~ (3,12)

which gives

N
14+ 8 exp (=E /KT ) =meem- ( 3.13 )
A

n =

Where A = CJa 4is a factor directly proportional to the

intensity of excitation.

B) Second Order Kinetics

Let n be the number of trapped electrons and m be the number
in conduction band. Then ( m + n ) is the number of empty luminescence
centre and rate of electrons returning from the Eonduction band is
given by

—%%— =om= cJ=-Bm(m+ n)+ ns exp, ( = E/XT )
«embd{ N-m) ---= (3,15)
and the rate of the electrons escaping from the traps is

g-g- = oxns exp.( ~E/KT ) =mb ( Non )  ===- (3.16 )
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Where B and b are constants and CJ is the rate of electrons
raising to the excited state, If the excitation is not of an
appreciably Low intensity the number of electrons in the conduction
band is much greater than the number of trapped ones and thus
m+ n é n
Hence

vipml « CJ and thus

N

1+ S exp.( =FE/KL ) =meeemew= (13,17)
B

nm

Where B = b\/CJ(p and thus is proportional to the sguare
root of the excitation intensity.

C) When the traps exist with complex distribution

The equation (3.13) is the rate of capture of electrons
excited in traps i8 equal to rate of escape of electrons from the
traps. This show trap depth 1s nearly constant. Suppose there is
variation of the trap depth. Let N(mis total number of filled traps.

So from a given excitation intensity.

Emax
Emax
N
- 4aE . (3.19)
1 4+ 8Sexp(~-E/KT )
0

For all the practical excitation intensitjes A<L<{GC and
thus above equation becomes after integratiion.

n, = NKT log (als 1 ) commmeaeee- (3.20)
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1 exp (-Emax - Emax / KT ) is proportional

Where A" = Kgl
t0 the excitation intensity. At high excitation intenzities whenl
.al> 1. The nunber of filled traps will be a linear function of
logarithm of the excitation intensities provided that A 8. When
A appreaches 8 a saturation state will be reached. A similar
logarithmic relation can be obtained by using equation. ( 3,17 )
which includes consideration of retrapping.

3.3 PHOSPHORESCENCE DECAY FOR DIFFERENT TRAP DISTRIBUTIONS 3

( Considering retrapping negligible ).

Generally a phosphor centains trap of various depths. If
there be N number of traps with activition energies lying between
E and E+4R then if we assume that retrapping is hegligible. the
phosphorescence intensityl at timetand after cessation of excitation

is given by

Emax

I= j Ns exp.{ =E/KT ) exp. (-ST exp ~E/KTME - (3,21)

Emm
_ Emax
NS
I= e {sT) exp.(-E/KT) exp. ( =B/KT JE ==e-= (3,22)

Bmm

If we consider N to be constant over an energy range from
Zero ¢p intensity (I) Then as per distribution following three cases
possible (a) Uniform trap distribution (b) Quasi uniform trap
distributidén (c) Experimental trap distribution,

a) Uniform trap distribution :

The distribution of traps is said to be uniform if a phosphor

contains an equallhumber of traps of all the depths in the range of
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energy zero to infinity. Under this condition the integration of
equation (3,22) gives,

NKT
I = [1 - exp (—sfgﬂ
If st)»1 , the intensity after first microsecond above

equation becones,

1 - %@_ T T S W G B W gy T ( 3.24 )
- Nk -1 ( 3.25 )
-1

= Const, t

Thus phosporescence intensity ( I ) is inversely proportional
to decay time ( t ) and a plot of I Versus t™1 shoula bea straight
line. More over, the plot of log I against log t should be a straight
line with a slope equal to -1 ,

b) Quasi uniform trap distribution :

The phosphors having number of traps N, which donot vary
too rapidly with values of E in a complete distribution are said to
be having quasi uniform trap distribution. Here the intensity of
phosphorescence decay at any time t is propoxtibnal to the number of
electrons in traps of mean life time given by

-1 e’(p ( E/mu ) - on - - - ( 3024 )

T = 8§

From the equation ( 3.24 ), the product of (13 ) 1is
proportional to E . Thus plot of (I-4+) against logt for given
phoséhorescence decay will represent the variation of N with t and

gives an approximate idea about the trap distribution.

c¢) Exponential trap distribution :

i1f we have N ./, exp. ( - BE ), as found in some
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experimental causes, then for s8¢ 1 we have

I = const, ¢t~ (Brr+l ) wme—= (3,26)

i.e. Power of t varies linearly with the temperature of
phosphor. The constant B ( which is +ve always ) can be found out
experimentally and also found from the shape of the thermoluminescence
curve,

When BKT=1 the equation ( 3.26 ) is correlated with the
bimoleculer law and when BKI=0, the case becomes of uniform trap
distributicn i.e., reciprocal law hold-good, Many Phosphors at room
temperature show the decay of the type given by equation (3,26)
with any trap distribution over a wide range, have decay is affected
by slight variation of temperature, This is because, with rising
temperature deeper traps supply electrons at the same rate at which
shallow traps supply eleétrons at room temperature, However at room
temperature, at time t , most of the light emission by a phosphor
with continuocus trap distributiocn is due to traps in which the
electrons will have the mean life time T=- .

3.4 RESULTS AND DISCUSSION

3.4.1 Decay curves :
Decay curves are plotted after exciting the sample for 200

seconds under ultraviclet source. The typical decay curves for varing
percentage of activator and co-activator are ( - Sm s N&, Dy ¢ Tb )
are shown in figure(3.1 to 3,5). It is seen that for all curves PL
intensity falls down rapidly at initial stage and then followed by
slow rate of decay. These are same general nature is reported for

alkaline earth sulphide phospors by other workers ( 7,12 ).

The first step in the analysis of decay curve 1is to decides

the nature of decay is exponential, hyperbolic or power Law, This

can be decided by graph ( I,t ) , (log It ) ana(pog I Vs log t).
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respectively. These graphsalso give information about the order of

kinetics,

The posibility of an expo nential decay with a single trap
depth can be examined with the help of equatioh (3.5) graph of log I
versus t are plotted, The plots are found t0 be non linear for all
samples, which indicateé@ non exponential decay with single trap.
However graph ; of Log I Vs log t are almost linear for all samples
typical graphs are shown in Eiq.(B.ﬁ to 3.11 ), which suggest that
the decay may be hyper-bolic or power law. The observed decay can
be represented by the equation of the form (3)

I=1, tP

Where I is intensity at any time t Iy is intensity at time
t=0 and b is the decay constant,
3.,4.2 Correlation coefficient

The degree of linearity between Log I and Log tfis confirmed
by evaluating correlation coefficient (r) using the equaticn,

NIxy =-%x .5Y
[(vex? - (sx) 2P [ n2yP- (1)) —--a2D)

Where x = logt and y = Log I for N set of observations. The
magnitude of r signifies the closeness of the relationship while its
sign indicates whether y increases or decreases with x. . When the
relationship is linear, the values or r equal to unity.

In present investigations, the valuesof r for all the samples
are calculated and are very close to -1 ( table 3.1 ). The negative

sign or r implies that intensity diminishes with time

3.4.3 Decay constant
The decay rate is generally indicated by the value of decay

constant (b) . Faster the decay higher is value of decay constant
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and vice-versa 1t also prbvidol the information about the rrtative

population of traps at various depths,

The value of decay constant is calculated by the method of
least square (13) using the relation.

NE(x-y)- Ex .TVY

b= )
N¥(x) 2 = (ZX)

Where x= logt and y=log I and N being number of observations,
Table (3.1) shows the valuea of decay constants calculated using
above formula. The same table includes the value of b obtained from
the slopes of staight lines on log I ~ log t plots. It is seen that

both these values are in good agreement with each other,

3.4.4 Variation of decay constant with the percentage of activator

and coO-activator ¢

The variation of decay constant (b) with percentage of NA
in host material[by keeping suitable percentage of Sm -'activatogj
is plotted, fig.( 3.12 ) which shows thetthere is no relation between
decay constant and percentage of -activator., Similarly decay
constant and percentage of activator Dy by keeping suitable
percentage of co-activator Tb constant plot in fig. (3,12) shows

there is no relation between decay constant and activator.

3.4.5 '_Peeling off ' of decay curves :

The decay in present investigation could be represented

by the equation I = I, +7P

« The values of b from calculated as
well from the graph is not equal to 2 or exactly equal to 1 for
t)»1 , as required by equation 4.10. This excludes the possiblity
of hyperbolic decay with single trap depth, However, the observed
power Law decay can be explained on the basis of mono molecular

super position theory 8uggested by Randall and Wilkin (3) and
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followed by other workers(14,15,16) According to this such a
decay results due toc the superposition of various exponentials
corresponding to different traps and is expressed by the
equation such as
I
= I, exp.(-P,t) * I02 exp.(P,t ) + I,, exp.(-Pnt)
eoes(3.30)
Where 101 Iozare starting contributions to luminescence
intensity first, second ...nth exponential components and

P) = S exp. (-B1/KT ), P, = exp.( - nzjm') P_ = S exp.(-En/KT )

n
are the transition probabilities of an electron escaping from
the traps of depth El Ez es++ En respectively.

It is possible to split each decay curve into a set of
exponentials by the method of successive substraction as suggested
by Bube (17) and others(18,19,20). In present investigation the
same procedure is adopted and the decay curves were split into
three exponentials fig., (3.13 tc 3.,18). The activation energies
(trap depths) corresponding to these exponentials are calculated
by using the slopes 91,92.93 of straight lines on semilog graph
between I and t. The values of E thus gvaluated for slowest,
middle and fastest exponentials are denoted by Elg E2 and E3
respectively and are shown in table (3.2), The value of S used
in the sbove calculations were obtained from the thermoluminescence
studies of the sample. ( estimated using Randall and Wilkin's
formula ) described in chapter\V ( Ref, table 4.7 and 4.8 ).

3.4.6 Life times and starting contribution 3

A) Life times : The slopes PI, P2 ,93 of three straight lines on

semilog graph between I and t represents the transition probabilities,
.

The reciprocal of these transition probabilities §1ves the values of
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life times Ty+ T2and T3 respectively of trapped electrons contri-

butdng to slowest, Middle and fase¢est exponential components

respectively, Which are shown in table (3,2),

B) Starting contributions: Three straight lines into which the
semilog plot is resolved ;re extrapolated to cut the intensity axis,
The values of I corresponding to these points, Iql quand I¢3
represents the starting contribution to intensity at t = o second
by slowest, middle and fastest exponentials,

3.4.7 Activition Energy :

The values of trap depth calculated for all samples
{ table 3.2 ) for slowest vary from .57 to .63 @evfor Middle.

«48 to .53 ev.' and .43 to .44 ev - for fastegt exponential,

3.4.8 Variation of activation energy with percentage of REp and RE,
in host material : '

From table (3.2), . it is seen that there is no significant
change in trap depth with activator concentration. This suggeststhat
change of percentage of RE, RE, ( CasiSm:Nd, Cas; Dy.Tb ) does not
introduce any new trapping levels, The observed minute changes in

the value of E could be due distribution of trap densities,(10,18,19)

3.439 Kinetics of Luminescence 3

The kinetics involved in the decay process may be either
monomolecular ( fist order ), bimodecular ( second order ) or
intermediate, depending upon relative location of traps and
luminescence centres. The monomolecular decay is exponential
represented by equation (3.5). The bimolecular prccess involves the
hyperbolic decay given by the equation (3.9) while the power Law

t

decay ( I=1I, 7/ ( 143 )=t ) results when prgcess is neither first

nor second order. Thus a straight line on semilog plot between I

and t represents a first order Kinetics where 28 & straight line
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between reciprocal of square root of intensity and time indicates
second order kinetics, Further for seccnd order and intermediate
kinetics a plot between log I and 1o0g t assumes a slope of «2 and =i
respectively at large value of ;_An examination of decay obtained
in present investigation reveals that they are neither exponential
( £4g.3.13 to 3,18 ) nor hyperpolic £ig,.(3.19) and slope of log I
versus log t # -2 . However, the decay can be represented by a
power law equation: of the type I = I, t-'b . But the value of b is
not exactly equal to unity as required by 1ntermédiate process
resulting from traps of single depth. Which excludes the possibility
of inter-mediate kinetics, ©n the other hand, the observed power
law decay could be well explained on the basis of mcnomolecular

superposition of theory suggesting thereby the kinetics involved

is likely to be monomolecular,

3.4.10 DRistribution of traping levels :

The trapping levels in a phosphor are distributed in their
depths. The distribution may be uniform, Quasi-uniform or exponential.
(3) for the present system the distribution is ascertained as follows:

For uniform trap distribution, over a wide range, the
relation between phosporescence intensity I and t is given by the
equation ( 3.23 )s Viz.

I = -—N-gm—- [1 - exp é-st)]

Phosphorescence, in present case lasts for few minutes
and frequency factor S, is of the order of 10° sec™!. Hence Sty 1

and above equation reduces to

=]
= NKT ¢
-1
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b. and for uniform

The relation is similar to I = Io t~
trap distribution b should be unity. However observed valuesof b
are not exactly equal to unity but are close to unity ( Table 3,1 )
This indicates that the trap distribution is not uniform but Probably
quasi uniform, Also refering tc equation.(3.26) I= constant t"BKT*{)
for an exponential trap distribution b = (BKT+l) which means b) 1
for the proposed samples b fluctuates ( .81 to 1.19‘). The plot
I verses t} fig.(3.20)for Cas:Sm:Nd and plot(3.21)Cas:Dy:Tb are not
exactly straight line, Which rules qut the possibiiity of expcnentyal

trap distribution,

Above conclusion is supported by a plot between 1.t and
log t obtained for few samples The plots are neithef parallel to
log t axis nor exponential as required by uniform and exponential
trap distribution respectively ( f£fig.3.22 ) i.e for Ca&szde(i.t)
increases attainsmaximum value and decreaseand becomes parellel to
logt -axis,,while in £fig (3.23) CasiDy:Tb : I.t decreases and
becomes parallel to log t axis, suggesting here by the trap distribution
to be non uniform. The curve also givesan idea aboﬁt the density of
traps at various depths. Since(I.t)is a measure of trap density
and log t is of trap depth.

3.5 §g§§§§g z

The important features of this chapter are to be summarised

as follows :
1) Phosporescence decay observed for integrated intensity
is of the form I=I_ P,

2) Nature of decay ik of powér law type and can be explained

in terms of superposition of various exponentials of mono- molecular

type.
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3) The value of decay constant is not exactly egual to
unity which excludes the possibility of the uniform trap distribution,
The distribution may be quasi-uniform,

4) The trap depth of effective level are relatively
insensitive tothe percentage of activators. ( Sm:Nd, Dy :Tb ).
But there is no relation between them, |

5) The probable kinetics of decay process is likely to

be monomolecular.

6) Percentage of activators ( Sm ¢ N@ , Dy t Tb )influences

the distribution of trap densities,

XaXzXmXe=XnXEXBX =X aX
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TABLE 3,1 : DECAY CHARACTERISTICS OF_SAMPIES STUDIED 300%k

Sample No. |'Co-relation ' ___ | Decey Constant b (-ve ) ______
| co-efficlent | () ylated Slope of graph
[}
KD 13 1,01 i 1.09 ; 1.06
XD 14 .99 ! 1.13 ; 1.12
W15 | .99 i 1.05 g 1.00
KD 16 J .99 ! 1.05 | 1.00
1] ]
KD 17 .99 : 1.06 ; 1.02
w18 .99 H .91 i .9
w19 | .98 3 .60 ; .70
]
K 20 ! .96 H 1.06 E 1.05
W 21 ; .99 : 1.11 ; 1.06
]
K 22 ! 1,00 g 1.19 E 1.06
]
W23 | .94 ] 1.05 | 1.04
K 24 | .99 ! 1.01 E 1.00
KD 25 H .99 ; 1.19 ' 1.14
o 26 | .99 ! 1.02 E 1.0C
K 27 ! .99 i .91 : .96
KD28 .98 ! .94 s .96
KD 29 .99 i 1,10 | 1.05
w30 | .99 : 1.10 i 1.03
KD 31 / .99 i 1.10 d 1.10
KD 32 .99 ! 1,01 ! 1.05
KD 33 .99 ; 1.02 i 1.02
m 38} .99 \ 1,01 5 1.00
KD 35 \ .99 { 1.01 ! 1.02
]
KD 36 g .99 ! .88 E .83
KD 37 E .99 3 .77 | .86
KD 38 ! .99 ! 1.03 | 1.05
XD 39 ! .99 ' 1.02 E 1.00
K 40 | .98 § 1.03 ' 1.04
KD 41 ! .99 5 1.03 E 1.06
o 42 | .99 | 1.07 i .99
KD 43 ! .99 E 1.10 : 1.12
! ¥
KD 24 : .99 E 1.10 : 1.12
1

- - -——— ——— s - P = s W D T s o s Gl M W -
- T o S W PO B s W e W P T W e o P g - - - - -



TABLE 3.2 3 DECAY CHARACTERISTICS OF SAMPLES STUDIED AT 3000K

Trap depth and life time from peeling off decay curves

Sample No.

i\ =

g W e S -fnr -

KD13
KD14
KD15
KD16
KD17
KD18
KD19
KD20
KD21
KD22
KD23
KD24
KD25
KD26
KD27
KD28
KD29
KD30
K31
KD32
KD33
KD34
K35
KD36
K037
KD38
KD39
KD40
KD41
KD 42
KD43

Slowest
exponential
foor = w = 0wl - ow - -
, (ev) '__‘_1_'1 sec
.61 | 16,9
.63 27,7
.62 22,7
.63 26.3
.61 13.3
.66 90,9
.62 45
.64 22,7
.62 16.6
.60 11.3
.62 21,2
.60 10
.62 18
.62 13.8
.61 1 12,6
.62 ' 17,2
.62 21,2
.62 13,3
.62 19,2
.60 8.4
.63 | 25
.62 15.7
.62 15
.60 7.9
.60 7.0
.63 25.7
.63 E 22.7
.59 | 6.9
.57 3 2.6
59 1 4.3
.61 i 5,01
57 1 2.8
]

Fastest

96

exponental

E,

pe— ™

- e o

(ev) | _Sec.

- g S T G T W G e G G T G W S G S W e W .

Middle
exponent?I
:E; (e;)-i- T, sec
= ——--.‘-—!
j 52 1 .41
' 52 | .42
\ .52 .46
.52 .42
.52 .37
.51 .23
! .49 .24
.51 .31
.51 J111
! .51 .3
.50 .24
, .51 .27
i .51 .27
.53 .5
.51 .29
.51 .25
.53 .56
.52 .36
.53 .06
.52 .44
.52 .71
.52 .
.52 .31
.51 .23
.51 .24
| .52 .48
.52 .47
.48 .1
.50 .21
«51 } 3
53 W12
50 | .2

g B S o T T e 2ot W

-

-

«43
.43
.43
.43
43
«49
.43
43
.43 ]
43
«43
«43
43
.84
.43
.44
.44
-44
.44
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