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CHAPTER III l FHOTCLUMINESCENCE 

STUDY OF PHOSPHORESCENCE *

3.1 INTRODUCTION »-

According to the theory of Phosphorescence this is 
electronic process involved in the luminescent material. These 
electronic processes are significently Influenced by trapping levels 
in the phosphor . Phosphorescence decay is a tool to investigate 
trapping levels in the phosphor and help to understand nature of the 
trapping states, energy levels and type of kinetics involved in the 
luminescent process.

In present study Photoluminescence of CaSs Sm : Nd and
oGassDysTb are studied at room temp. ( 300i k ) so as to get 

information of the following aspects.

1) The nature of decay curve.
2) Energy distribution of trap levels.
3) Decay time constant.
4) Kinetics involved in decay mechanism and
5) Effect of activetors on decay behaviour.

3.2 THEORETICAL BACKGROUND 

3.2.1 DECAY LAWS *
While studing the decay of emission from organic molecules 

in rigid media Jablonskii (1). Proposed an energy level scheme for 
emitting centre as shown in fig ( 1*1 ). The fluorescence is given 
by the transitions between the excited state P and the ground state 
G, but the excited molecules or centre may relax to metastable state M. 
transition M**G being forbidden. To return to normal state transition
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M —** P must be effected by thermal or optical activation. Thus 
phosijijbrescence emission due to F -*• G transition is conditioned in 

rate by optical process M-*» F. The energy required for the latter is 
S. Then the probability of transition occurs per second is given by

P - S exp. ( - E/KT ). -----  ( 3.1 )
Where S is escape frequency factor, E is activation energy 

< trap depth ) and T is the abolute temperature.

According to E.Becquerel (2) phosphorescence decay can be 
either exponential or hyperbolic as per the kinetic involved in the 
luminescent process.

A) EXPONENTIAL DECAY *

The electron traps and luminescent centre are situated close 
to each other in the phosphor. Nature of decay in such phospors is 
exponential decay or monomolecular decay and kinetics involved in 
these material is first order kinetics.

for
If P is the transition probability ^ return of the centre 

to ground state when n centres are excited at any instant then
dn3F* J Pn. (3.2

Where J is the number of excited centres per second by the 
incident radiation. According to Randall and Wilkins { 3,4 ) The 
transition probability is given by equation (3.1 ) 

pm s exp. ( - B/KT )
and the luminescent intensity I * Pn 
I m 1 - exp. ( - pt )J (3.3)

ofsolution equation (3.2)

Where I0 is emission intensity at t - o . Under steady 
excitation I - o so luminescent decay from equation ( 3.2)
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dn“3F*
dn
n

pn

pdt. by integrating

n • n© exp. ( - pt. ) (3.4 )
Here no are nuiriber of excited electrons at t ■ 0
The luminescent intensity is given by 
t dn / .I . - m - ( - pn ).
I ■ Pn0 exp ( - Pt ).
I “ lo exp ( - Pt ). —-——- ( 3.4 )
Where I0 • PnD is the intensity ( when t - 0 ) and P - --i— , 

where T is the life time of the phosphors.
Zn above equation rate of decay depends on transition 

probability P. Which is usefull to determine trap depth.

B) HYPERBOLIC DECAY a
This is known as the bimolecular decay of luminescence, 

exist when electron traps are located away from the luminescence 
centre and kinetics involved in it is second order.

Let n be the impurity centres with which only n number of 
electrons combine at a time. If J centres are emptied per second 
by excitation, the process is given by

gS ■ j — An^ ............ (3.6 )
Where A is a constant known as recoiiibination coefficient. 
If P is the probability with which an electron combines 

with any of the centre in time dt , then
P ■ Andt ( 3.7 )
If all electrons return to ground states of the centres 

through the conduction band with the above said probability P then 
with J m 0 , the rate of decay will be
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dna? An on integration.

n©
" " ( 1 + n^,At )

Luminescence intensity 1

------  ( 3.8 )
. -|adt
« - ( - An2 )

V A( 1+ nip At’)'2

( 1 +<C,t )2 ( 3.9 )

Where °C » nD A an another constant for large value of 
t ( 1 ) above equation becomes.

I « -.IP, i , ---------- (3.10 )

Above equation shows decay depends on initial intensity of 
luminescence, and coefficient A, & temperature.

Treating the process more generally in the light of different 
capture cross sections for electrons, empty centres and traps. 
Adirowitch < 5,6 ) arrived at an approximate relation which is of the 
form given by Becquerel.

Constant < 4.11 )( t + to )
Where b depends on the ratio of the cepture cross sections 

of traps and empty centres. However,this equation fails in cases 
where well separated group of traps exist.
3.2.2 EFFECT OF STEADY EXCITATION OF PHOSPHOR

When the phosphor is excited at a fixed temperature by 
steady excitation, its luminescent intensity reaches a constant value 
and the state of the phosphor is refered to as the equilibrium state.
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and ihithis condition thte concentration of filled electron traps 
is in equilibrium. If only a single trap occurs in the phosphor 
then we have following two cases
A) First Order Kinetics t

Let J be the intensity of excitation. Then the rate of 
raising of electrons to the excited state is proportional to J, 
and is given by CJ where C is constant of proportionality. If there 
are n electrons in N traps, then the rate of capture at excited 
electrons in traps is Qja ( N-n ), 'a. being the probability of
capture per trap. The rate of escape of electrons from traps is 
given by ns exp ( - E / KT ). Under the equilibrium condition, the 
rate of capture of excited electrons in traps and rate of escape 
of electrons from traps will be equal and thus we get

CJa ( N - n ) - ns exp ( - E/KT ) — (3.12)
which gives
„ . ----- S--------

1 + 8 exp (—E /KT )------( 3.13 )-----------

Where A - CJa is a factor directly proportional to the 
intensity of excitation.

B) Second Order Kinetics

Let n be the number of trapped electrons and m be the number
in conduction band. Then ( m + n ) is the number of empty luminescence 
centre and rate of electrons returning from the conduction band is 
given by
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Where p end b are constants and Cj is the rate of electrons 

raising to the excited state. If the excitation is not of an 

appreciably Low intensity the number of electrons in the conduction 

band is much greater than the number of trapped ones and thus 

m ♦ n m n 

Hence

^m1 ■ CJ and thus

_ _ Nn *
1 + S exp. ( - E/KT ) ----------------- <3.17 )

B

Where B « b\Jcj/p and thus is proportional to the square 

root of the excitation intensity.

C) When the traps exist with complex distribution

The equation (3.13) is the rate of capture of electrons 

excited in traps is equal to rate of escape of electrons from the 

traps. This show trap depth is nearly constant. Suppose there is 

variation of the trap depth. Let KKnis total number of filled traps. 

So from a given excitation intensity.

Bmax

- J ndE -------------< 3.18 )
0

Emsx

N
------------------------------- m < 3.19 )
1 + s exp < - e/ icr )

For all the practical excitation intensities A«C and 

thus above equation becomes after integratiion.

- NKT log ( A1 + 1 ) (3.20)
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Where A* ■ AS* exp (~Emax * Emax / KT ) is proportional 

to the excitation intensity. At high excitation intensities when^ 
1. The number of filled traps will be a linear function of 

logarithm of the excitation intensities provided that A« S. When 
A appreaches S a saturation state will be reached. A similar 
logarithmic relation can be obtained by using equation. ( 3.17 ) 
which includes consideration of retrapping.
3.3 PHOSPHORESCENCE DECAY FOR DIFFERENT TRAP DISTRIBUTIONS *

( Considering retrapping negligible ).
Generally a phosphor centalns trap of various depths. If 

there be N number of traps with activition energies lying between 
E and E+dE then if we assume that retrapping is negligible, the 
phosphorescence intensity I at time'"tand after cessation of excitation 
is given by

Emax

Ns exp.( -E/KT ) exp. (-ST exp -E/KTJdE --  (3.21)
*mm

Emax
NS

exp.(ST) exp.(-E/KT) exp. ( -E/KT )dE -----(3.22)

Emm
If we consider N to be constant over an energy range from 

Zero tp intensity (1) Then as per distribution following three cases 
possible (a) Uniform trap distribution (b) Quasi uniform trap 
distribution (c) Experimental trap distribution, 
a) Uniform trap distribution 8

The distribution of traps is said to be uniform if a phosphor 
contains an equal number of traps of all the depths in the range of
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energy zero to Infinity. Under this condition the integration of 
equation (3.22) gives.

I « -£££--- |~1 - exp (-St)]

If St»l . the intensity after first microsecond above 
equation becomes.

1 NKT
t < 3.24 )

- NK t_1 
■ Const, t'

( 3.25 )

Thus phosporescence intensity ( I ) is inversely proportional 
to decay time ( t ) and a plot of I Versus t~* should be a straight 
line. More over, the plot of log I against log t should be a straight 
line with a slope equal to -1 . 
b) Quasi uniform trap distribution *

The phosphors having number of traps N, which donot vary 
too rapidly with values of E in a complete distribution are said to 
be having quasi uniform trap distribution. Here the intensity of 
phosphorescence decay at any time t is proportional to the number of 
electrons in traps of mean life time given by

T - S"1 exp ( E/KT ) -------  ( 3.24 )
Prom the equation ( 3.24 ), the product of (T4 ) is 

proportional to E . Thus plot of (X*i ) against logt for given 
phosphorescence decay will represent the variation of H with t and 
gives an approximate idea about the trap distribution.

c) Exponential trap distribution 1

If we have N <*£ exp. ( - pE ), as found in some
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experimental causes, then for *f*» 1 we have

1 • const, t --------— (3.26)
i.e. Power of t varies linearly with the temperature of 

phosphor. The constant p ( which is +ve always ) can be found out 
experimentally and also found from the shape of the thermoluminescence 
curve•

When^RT-1 the equation ( 3.26 ) is correlated with the 
bimoleculer law and when J3KT«0, the case becomes of uniform trap 
distribution i.e. reciprocal law hold-good. Many Phosphors at room 
temperature show the decay of the type given by equation (3.26) 
with any trap distribution over a wide range, have decay is affected 
by slight variation of temperature. This is because, with rising 
temperature deeper traps supply electrons at the same rate at which 
shallow traps supply electrons at room temperature. However at room 
temperature, at time t , most of the light emission by a phosphor 
with continuous trap distribution is due to traps in which the 
electrons will have the mean life time T» -i .
3.4 RESULTS AM> DISCUSSION

3.4.1 Decay curves *
Decay curves are plotted after exciting the sample for 200 

seconds under ultraviolet source. The typical decay curves for varing 
percentage of activator and co-activator are ( ' Sm t Nd, Dy * Tb ) 
are shown in figure(.3.1 to 3.5). It is seen that for all curves PL 
intensity falls down rapidly at initial stage and then followed by 
slow rate of decay. These are same general nature is reported for 
alkaline earth sulphide phospors by other workers ( 7,12 >.

The first step in the analysis of decay curve is to decides 
the nature of decay is exponential, hyperbolic or power Law, This
can be decided by graph ( X*t ) , (log i-,t ) and (Log I Vs log t) .
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respectively. These graphsaIso give information about the order of 
kinetics.

The posibility of an expo nential decay with a single trap 
depth can be examined with the help of equation (3.5) graph of Log I 
versus t are plotted. The plots are found to be non linear for all 
samples, which indicated non exponential decay with single trap. 
However graph . of Log I Vs log t are almost linear for all samples 
typical graphs are shown in Pig.(3.6 to 3.11 ), which suggest that 
the decay may be hyper-bolic or power law. The observed decay can 
be represented by the equation of the form (3)

I - Ip t"b

Where I is intensity at any time t 1© is intensity at time 
t<*0 and b is the decay constant.

3.4.2 Correlation coefficient *

The degree of linearity between Log I and Log t is confirmed 
by evaluating correlation coefficient (r) using the equation.

Nix y - £ x » SY____________
[MEX2 - < ex) { Niy2- ( ty)^1* ---(4.27)

Where x » logt and y « Log I for N set of observations. The 
magnitude of r signifies the closeness of the relationship while its 
sign indicates whether y increases or decreases with x. . When the 
relationship is linear, the values or r equal to unity.

In present investigations, the valuesof r for all the samples 
are calculated and are very close to -1 ( table 3.1 ). The negative 
sign or r implies that intensity diminishes with time

3.4.3 Decay constant
The decay rate is generally indicated by the value of decay 

constant (b) . Paster the decay higher is value of decay constant
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population of traps at various depths.

The value of decay constant is calculated by the method of 
least square (13) using the relation.

N£(x • y) - lx .iyb * ........— —..... . ■■ ..—»I(x) 2 - (£* )Z

Where x« logt and y»log I and N being number of observations. 
Table (3.1) shows the values of decay constants calculated using 
above formula. The same table includes the value of b obtained from 
the slopes of staight lines on log I - log t plots. It is seen that 
both these values are in good agreement with each other.

3.4.4 Variation of decay constant with the percentage of activator 
and co-activator t

The variation of decay constant (b) with percentage of Nd 
in host materiality keeping suitable percentage of Sm activator] 
is plotted^ fig. ( 3.12 ) which shows there is no relation between 
decay constant and percentage of -activator. Similarly decay 
constant and percentage of activator Dy by keeping suitable 
percentage of co-activator Tb constant plot in fig. (3.12) shows 
there is no relation between decay constant and activator.
3.4.5 * Peeling off * of decay curves s

The decay in present investigation could be represented 
by the equation I « Ip t“b . The values of b from calculated as 
well from the graph is not equal to 2 or exactly equal to 1 for 
t»l , as required by equation 4.10. This excludes the possiblity 
of hyperbolic decay with single trap depth. However, the observed 
power Law decay can be explained on the basis of mono molecular 
super position theory suggested by Randall and Wilkin (3) and
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followed by other worker<?(14,15,16) According to this such a 
decay results due to the superposition of various exponentials 
corresponding to different traps and is expressed by the 
equation such as

I ■ 1 t~b o
■ exp.(-P,t) * IQ exp.(P2t ) + lon exp.(-Pnt)

2 ....(3.30)

Where I I are starting contributions to luminescence °1 °2
intensity first, second ...-nth exponential components and 
Pa - S exp. (-S1/KT ), P2 - exp. ( - E^KT) Pn - S exp. (-En/KT ) 
are the transition probabilities of an electron escaping from 
the traps of depth E3 E2 .... En respectively.

It is possible to split each decay curve into a set of 
exponentials by the method of successive substraction as suggested 
by Bube (17) and others(18,19,20). In present investigation the 
same procedure is adopted and the decay curves were split into 
three exponentials fig. (3.13 to 3.18). The activation energies 
(trap depths) corresponding to these exponentials are calculated 
by using the slopes P3,P2,P3 of straight lines on semilog graph 
between I and t. The values of E thus evaluated for slowest, 
middle and fastest exponentials are denoted by Ej, E2 and E^ 
respectively and are shown in table (3.2). The value of S used 
in the above calculations were obtained from the thermoluminescence 
studies of the sample. ( estimated using Randall and Wilkin’s 
formula ) described in chapterIV ( Ref. table 4-.7 and 4.8 ).
3.4.6 Life times and starting contribution *
A) Life times j The slopes Pj, P2 ,P3 of three straight lines on 
semilog graph between I and t represents the transition probabilities. 
The reciprocal of these transition probabilities 'gives the values of
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life times T^» T2«nd T3 respectively of trapped electrons contri­

buting to slowest* Middle and fastest exponential components 
respectively, which are shown in table (3.2).

B) Starting contributions! Three straight lines into which the 
semilog plot is resolved are extrapolated to cut the intensity axis. 
The values of I corresponding to these points. IQ and 1Q

1 '3
represents the starting contribution to intensity at t « o second 
by slowest, middle and fastest exponentials.
3.4.7 Activitlon Energy i

The values of trap depth calculated for all samples 
( table 3.2 ) for slowest vary from .57 to .63 «vfor Middle.
.48 to .53 ev.i and .43 to .44 ev for fastest exponential.

3.4.8 Variation of activation energy with percentage of REy and RE., 
in host material s

From table (3.2). . it is seen that there is no significant 
change in trap depth with activator concentration. This suggeststhat 
change of percentage of RB^, RE2 ( Cas*.Sm;Nd; Casj Dy;Tb ) does not 
introduce any new trapping levels. The observed minute changes in 
the value of E could be due distribution of trap densities.(10.18.19)

3*459 Kinetics of Luminescence *

The kinetics involved in the decay process may be either 
monomolecular ( fist order ). bimolecular ( second order ) or 
intermediate, depending upon relative location of traps and 
luminescence centres. The monomolecular decay is exponential 
represented by equation (3.5). The bimolecular process involves the 
hyperbolic decay given by the equation (3.9) while the power Law 
decay ( I ■ le / ( 1+^ )”1 ) results when process is neither first 

nor second order. Thus a straight line on semilog plot between 1

and t represents a first order Kinetics where as 8 straight line



between reciprocal of' square root of intensity and time indicates 
second order kinetics* Further for second order and intermediate 
kinetics a plot between log X and Log t assumes a slope of -2 and >1 
respectively at large value of t An examination of decay obtained 
in present investigation, reveals that they are neither exponential 
( fig.3.13 to 3.18 ) nor hyperpolic fig*(3.19) and slope of log I 
versus log t ^ -2 . However, the decay can be represented by a 
power law equation' of the type I « Iq t_ . But the value of b is 
not exactly equal to unity as required by intermediate process 
resulting from traps of single depth. Which excludes the possibility 
of inter-mediate kinetics. On the other hand, the observed power 
law decay could be well explained on the basis of monomolecular 
superposition of theory suggesting thereby the kinetics involved 
is likely to be monomolecular.
3.4.10 Distribution of traplnq levels i

The trapping levels in a phosphor are distributed in their 
depths. The distribution may be uniform, {^uasi-uniform or exponential. 
(3) for the present system the distribution is ascertained as follows!

For uniform trap distribution, over a wide range, the 
relation between phosporescence intensity I and t is given by the 
equation ( 3.23 )t viz.

X . -HjSL- £l - exp <~st)J
Phosphorescence, in present case lasts for few minutes

g .1and frequency factor S, is of the order of 10 sec . Hence St» 1
and above equation reduces to 

NKT



The relation is similar to I ■ Ie t”b, and for uniform 
trap distribution b should be unity. However observed valuesof b 
are not exactly equal to unity but are close to unity < Table 3.1 )
This indicates that the trap distribution is not uniform but probably 
quasi uniform. Also refering tc equation.(3.26$ X- constant t“ 
for an exponential trap distribution b « (BKT+1) which means b> 1 
for the proposed samples b fluctuates ( .81 to 1.19 ). The plot 
I verses t~* fig.^3.20) for CassSmsNd and plot(3.2l)\Cas:Dy:Tb are not 

exactly straight line. Which rules out the possibility of exponential 
trap distribution.

Above conclusion is supported by a plot between l.t and 
log t obtained for few sampler The plots are neither parallel to 
log t axis nor exponential as required by uniform and exponential 
trap distribution respectively ( fig.3.22 ) i.e for Ca&*Sm*Nd^I.t) 
increases attainsmaximurn value and decreasend becomes parellel to 
logt -axisf while in fig (3.23) CasiDysTb t l.t decreases and 
becomes parallel to log t axis, suggesting here by the trap distribution 
to be non uniform. The curve also givejan idea about the density of 
traps at various depths. Since(l.t)is a measure of trap density 
and log t is of trap depth.
3.5 SUMMARY s

The important features of this chapter are to be summarised 
as follows :

1) Phosporescence decay observed for integrated intensity 
is of the form I»I0 t”b.

2) Nature of decay ife of pdw6r lAw type and can be explained 
in terms of superposition of various exponentials of mono-molecular 
type.
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3) The value of decay constant is not exactly equal to 

unity which excludes the possibility of the uniform trap distribution. 

The distribution may be quasi-uniform.

4) The trap depth of effective level are relatively 

insensitive, to the percentage of activators. ( SimNd, Dy sTb ).

But there is no relation between them.

5) The probable kinetics of decay process is likely to 

be monomolecular.

6) Percentage of activators ( Sm * Nd , Dy t Tb )influences 

the distribution of trap densities.

X“X»X»X**X»X«X»X«X«X
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Sample No. ---
-i

O
 I 0 l -relation !' Decay Constant b (-ve )

1
l

co-efficient 
( r - Ve ) i Calculated

r _
i, Slope of graph

KD 13
I
I
1 1.01 | 1.09

r
iI 1.06

KD 14 f1 .99 | 1.13 1.12
KD 15 l1 .99 j 1.05 1.00
KD 16 1

1 .99 ,* 1.05 * 1.00

KD 17 l1 .99 ! 1.06 i
ii 1.02

KD 18
1
1
I .99 J .91 i

i .91

KD 19 i
1 .98 ! .60 i

ii .70

KD 20 1| .96 ; i.06 i
t 1.05

KD 21 1! .99 ! l.n
j 1.10

i
ti 1.06

KD 22 ii 1.00 ii 1.06

KD 23 ii .94 i 1.05 i
ii 1.04

KD 24 11 .99 { 1.01 ii 1.00

KD 25 t1 .99 ! 1.19 i
i 1.14

KD 26
1
11 .99 1 1.02 i

i 1.0C

KD 27 ii .99 ! .91 1
1i .96

KD28
1
1| .98 { .94 ii .95

KD 29 ii .99 ! 1.10 i
i 1.05

KD 30
111 .99 ‘ 1.10 i• 1.03

KD 31 t
i .99 1 1.11 i

tI 1.10

KD 32
1t| .99 \ 1.01 ii 1.05

KD 33 i
i .99 ! 1.02 1i 1.02

KD 34
f
1| .99 | 1.01 it 1 .00

KD 35 i .99 ! i.oi
t
ii 1.02

KD 36
1
1| .99 { .88 1

i .83

KD 37 ii .99 .77
i
i
I

.86

KD 38
i
11 .99 j 1.03 t\

1
i

1.05

KD 39 ii .99 { 1.02 1.00

KD 40
i
i .98 * 1.03 i

* 1.04

KD 41 i
i .99 ! 1.03 11i

1.06

KD 42
I
1 .99 » 1.07 i

i .99

KD 43 I
l .99 ! 1.10 i

ii
1.13

KD 44
i
•i .99 » 1.10 i

i•
1.13
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TABLE 3.2 * DECAY CHARACTERISTICS OF SAMPLES STUDIED AT 300°K 

Trap depth and life time from peeling off decay curves

Sample NoJ Slowest 1i Middle Fastest
1 exponential 1I exponents1 exponents11 _ •
11 Ej (ev) | T. sec ii Ej (ev) j E_(ev) 'T.Secs

- - - - - - - - - - - F
KD13 1

<
11

.61 16.9 j .52 .41 .43 .015
.015KDl 4 .63 27.7 I

i
.52 j .42 .43

KDl 5 11
111

.62 22.7 i
ii
i

.52 j .46 .43 .015
KD16 .63 26.3 .52 j 

.52 j
.42 .43 .015

KDl 7 ll111

.61 13.3 ii .37 .43 .015
KDl 8 .66 90.9 ii .51 j .23 .49 .015
KDl 9 1

111

.62 45 iiii
.49 | .24 .43 .015

KD20 .64 22.7 .51 * .31 .43 .015
KD21 l

l111

.62 16.6 iiiii

.51 J .111 .43 .015
KD22 .60 11.3 .51 | .3 .43 .015
KD2 3 I

1t»

.62 21.2 iiiii

.50 ! .24 .43 .015
KD24 .60 10 .51 { .27 .43 .015

KD25 111»I
.62 18 i

i .51 } .27 .43 .015
KD2 6 .62 13.8 1

i .53 { .5 .44 .015

KD2 7 1
!
ii

.61 12.6 iiiii

.51 * .29 .43 .015

KD28 .62 17.2
21.2

.51 J .25 .44 .015

KD29 i»ii
.62 i

j
i
i■ii

.53 { .56 .44 .015

KD30 .62 13.3
19.2

.52 } .36 .44 .015

KD31 iiiii

.62 .53 j 

.52 }
.06 .44 .015

KD32 .60 8.4 .44 .44 .015

KD33
ii••i

.63 25 •i
i

.52 .71 .44 .015

KD34 .62 15.7 .52 i .71 .44 .015

KD35 «•iii
.62 15 i

ii*

.52 J .31
.23

.43 .015
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DECAY CURVES. AT 300°K

(origin different FOR DIFFERENT 
samples)
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DECAY CURVE AT 30o’K
(origin different FOR different 

SAMPLES.)
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DECAY CURVES AT 300 K

(origin different for different 
samples}
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DECAY CURVES AT 300°K
(origin different for different 

SAMPLES.)
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PLOT OF loci I Vs log t FIG.NO. = 3-6
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log t
PLOT OF log I Vs log t FIG.NQ-3-8.
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log t
PLOT OF log I Vs logt FIG. NO.: 3-9.
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i°g t
PLOT OF log I Vs logt FIG.NO.: 3-11.
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PEELING OFF OF DECAY CURVE

FIG.NO; 3-13.
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PEELING OFF OF DECAY CURVE
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KD18

PEELING OFF OF DECAY CURVE .

RS.NO.3-15
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KD16

PEELING OFF OF DECAY CURVE
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PEELING OFF OF DECAY CURVE

FIG. NO.: 3-17.
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PEELING OFF OF DECAY CURVE

FI 6. NO.: 3-18.
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Plot of (I *t ) Vs log t FIG.NO; 3-22
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Plot of (1 *t ) Vs log t f 16. NO.’ 3*23


